Bayesian modelling of multivariate quantitative traits using seemingly unrelated regressions.

نویسندگان

  • Claudio J Verzilli
  • Nigel Stallard
  • John C Whittaker
چکیده

We investigate a Bayesian approach to modelling the statistical association between markers at multiple loci and multivariate quantitative traits. In particular, we describe the use of Bayesian Seemingly Unrelated Regressions (SUR) whereby genotypes at the different loci are allowed to have non-simultaneous effects on the phenotypes considered with residuals from each regression assumed correlated. We present results from simulations showing that, under rather general conditions that are likely to hold in real situations, the Bayesian SUR approach has increased probability of selecting the true model compared to univariate analyses. Finally, we apply our methods to data from subjects genotyped for 12 SNPs in the apolipoprotein E (APOE) gene. Phenotypes relate to response to treatment with atorvastatin and include changes in total cholesterol, low-density lipoprotein cholesterol, and triglycerides. Missing genotype data are naturally accommodated in our Bayesian framework by imputing them using a nested haplotype phasing algorithm.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Modeling of multivariate longitudinal phenotypes in family genetic studies with Bayesian multiplicity adjustment

Genetic studies often collect data on multiple traits. Most genetic association analyses, however, consider traits separately and ignore potential correlation among traits, partially because of difficulties in statistical modeling of multivariate outcomes. When multiple traits are measured in a pedigree longitudinally, additional challenges arise because in addition to correlation between trait...

متن کامل

Bayesian quantitative trait loci mapping for multiple traits.

Most quantitative trait loci (QTL) mapping experiments typically collect phenotypic data on multiple correlated complex traits. However, there is a lack of a comprehensive genomewide mapping strategy for correlated traits in the literature. We develop Bayesian multiple-QTL mapping methods for correlated continuous traits using two multivariate models: one that assumes the same genetic model for...

متن کامل

Computing all roots of the likelihood equations of seemingly unrelated regressions

Seemingly unrelated regressions are statistical regression models based on the Gaussian distribution. They are popular in econometrics but also arise in graphical modeling of multivariate dependencies. In maximum likelihood estimation, the parameters of the model are estimated by maximizing the likelihood function, which maps the parameters to the likelihood of observing the given data. By tran...

متن کامل

Bayesian model order determination and basis

Bayesian methods are developed for the seemingly unrelated regressions (SUR) model where the model order or structure is presumed random. In particular we consider the class of models that are linear in some basis space. This class includes standard linear regression as a special case, as well as those models that involve non-linear transformations of the explanatory variables through a set of ...

متن کامل

Semiparametric Bayesian Inference in Multiple Equation Models

This paper outlines an approach to Bayesian semiparametric regression in multiple equation models which can be used to carry out inference in seemingly unrelated regressions or simultaneous equations models with nonparametric components. The approach treats the points on each nonparametric regression line as unknown parameters and uses a prior on the degree of smoothness of each line to ensure ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Genetic epidemiology

دوره 28 4  شماره 

صفحات  -

تاریخ انتشار 2005